Diophantinem-tuples with elements in arithmetic progressions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine m-tuples with elements in arithmetic progressions

In this paper, we consider the problem of existence of Diophantine m-tuples which are (not necessarily consecutive) elements of an arithmetic progression. We show that for n ≥ 3 there does not exist a Diophantine quintuple {a, b, c, d, e} such that a ≡ b ≡ c ≡ d ≡ e (mod n). On the other hand, for any positive integer n there exist infinitely many Diophantine triples {a, b, c} such that a ≡ b ≡...

متن کامل

Arithmetic progressions with constant weight

Let k ≤ n be two positive integers, and let F be a field with characteristic p. A sequence f : {1, . . . , n} → F is called k-constant, if the sum of the values of f is the same for every arithmetic progression of length k in {1, . . . , n}. Let V (n, k, F ) be the vector space of all kconstant sequences. The constant sequence is, trivially, k-constant, and thus dim V (n, k, F ) ≥ 1. Let m(k, F...

متن کامل

Arithmetic Progressions with Square Entries

We study properties of arithmetic progressions consisting of three squares; in particular, how one arithmetic progression generates infinitely many others, by means of explicit formulas as well as a matrix method. This suggests an equivalence relation could be defined on the arithmetic progressions, which lead to interesting problems for further study. The purpose of this paper is to investigat...

متن کامل

Primes in arithmetic progressions

Strengthening work of Rosser, Schoenfeld, and McCurley, we establish explicit Chebyshev-type estimates in the prime number theorem for arithmetic progressions, for all moduli k ≤ 72 and other small moduli.

متن کامل

Discrepancy in Arithmetic Progressions

It is proven that there is a two-coloring of the first n integers forwhich all arithmetic progressions have discrepancy less than const.n1/4. Thisshows that a 1964 result of K. F. Roth is, up to constants, best possible. Department of Applied Mathematics, Charles University, Malostranské nám. 25,118 00 Praha 1, Czech RepublicE-mail address: [email protected] Courant Insti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2014

ISSN: 0019-3577

DOI: 10.1016/j.indag.2013.08.006